1. Given a $n\times n$ matrix $B$ defined by $e^B$ by
$$e^B=\sum_{j=0}^\infty \frac{B^j}{j!}$$
Let p be the characteristic polynomial of $B$ Then the matrix $e^{P(B)}$ is
2. Let $x=(x_1,x_2,x_3), y=(y_1,y_2,y_3)\in \mathbb{R}^3 $ be linearly independent.
Let
$$\delta_1 =x_2y_3-y_2x_3$$
$$\delta_2 =x_1y_3-y_1x_3$$
$$\delta_3 =x_1y_2-y_1x_2$$
If V is the span of $x,y$ then,
Consider this determinant,
\begin{vmatrix}
u & v & w \\
x_1 &x_2&x_3 \\
y_1&y_2&y_3 \\
\notag
\end{vmatrix}
If $\{u,v,w\}$ spans \(\mathbb{R}^3\) thus also spans \(x,y\) and thus the value of this determinant is zero.
The expression written in the first option is the value of this determinant
so, 1st option is correct.
3. Let $A=\begin{bmatrix} 1&0\\0&-1\end{bmatrix}$ .Let $f:\mathbb{R}^2\times \mathbb{R}^2\to \mathbb{R}$ be defined by $f(v,w)=w^TAv$,
Pick the correct statement from below:
$$e^B=\sum_{j=0}^\infty \frac{B^j}{j!}$$
Let p be the characteristic polynomial of $B$ Then the matrix $e^{P(B)}$ is
- $I_{n\times n}$
- $0_{n\times n}$
- $e \times I_{n\times n}$
- $\pi \times I_{n\times n}$
Solution:
Since every characteristic polynomial is satisfied by the matrix. (caley hamilton Theorem)
So, \(P(B)=0\) So , \(e^0=I_{n\times n}\)
So, 1st option is correct.
2. Let $x=(x_1,x_2,x_3), y=(y_1,y_2,y_3)\in \mathbb{R}^3 $ be linearly independent.
Let
$$\delta_1 =x_2y_3-y_2x_3$$
$$\delta_2 =x_1y_3-y_1x_3$$
$$\delta_3 =x_1y_2-y_1x_2$$
If V is the span of $x,y$ then,
- $V=\{(u,v,w):\delta_1u-\delta_2v+\delta_3w=0\}$
- $V=\{(u,v,w):-\delta_1u+\delta_2v+\delta_3w=0\}$
- $V=\{(u,v,w):\delta_1u+\delta_2v-\delta_3w=0\}$
- $V=\{(u,v,w):\delta_1u+\delta_2v+\delta_3w=0\}$
Consider this determinant,
\begin{vmatrix}
u & v & w \\
x_1 &x_2&x_3 \\
y_1&y_2&y_3 \\
\notag
\end{vmatrix}
If $\{u,v,w\}$ spans \(\mathbb{R}^3\) thus also spans \(x,y\) and thus the value of this determinant is zero.
The expression written in the first option is the value of this determinant
so, 1st option is correct.
3. Let $A=\begin{bmatrix} 1&0\\0&-1\end{bmatrix}$ .Let $f:\mathbb{R}^2\times \mathbb{R}^2\to \mathbb{R}$ be defined by $f(v,w)=w^TAv$,
Pick the correct statement from below:
- There exists an eigenvector $v$ of $A$ such that $Av$ is perpendicular to $v$
- The set $\{v\in \mathbb{R}^2 |f(u,v)=0\}$ is a nonzero subspace of $\mathbb{R}^2$
- If $u,v\in \mathbb{R}^2$, are non-zero vectors such that $f(v,v)=0=f(w,w)$, then $v$ is a scala multiple of $w$
- For every $v\in \mathbb{R}^2$, there exists a nonzero $w\in \mathbb{R}^2$ such that $f(v,w)=0$
Solution:
For every $(u,v)\in \mathbb{R}$ there will exists $(v,u)\in \mathbb{R}^2$ such that
$\begin{bmatrix}u&v\end{bmatrix}\begin{bmatrix}1&0\\0&-1\end{bmatrix}$ $\begin{bmatrix}v\\u\end{bmatrix}=0$
So,
4th option is correct.
4. Let $A$ be a $n\times m$ matrix and $b$ be $n\times 1$ vector (with real entries), suppose the equation $Ax=b, x\in \mathbb{R}^m$ admits a unique solution, Then we can conclude that
4. Let $A$ be a $n\times m$ matrix and $b$ be $n\times 1$ vector (with real entries), suppose the equation $Ax=b, x\in \mathbb{R}^m$ admits a unique solution, Then we can conclude that
- $m\geq n$
- $n\geq m$
- $n=m$
- $n>m$
Solution:Let $A_{n\times m} $ matrix has rank $r$ then there exists unique solution in two cases
- $n=m=r$
- $r=m<n$
Combining two cases, We get $n\geq m$
So, 2nd option is correct.
5.Let $V$ be the vactor space of all real polynomials of degree $\leq 10$. Let $Tp(x)=p'(x)$ for $p\in V$ be a linear transformation from $V$ to $V$. Consider the basis $\{1,x,x^2,\cdots x^{10}\}$ of $V$. Let $A$ be the matrix of $T$ with respect to this basis. Then
Trace$A$=1
Det $A$=0
There is no $m\in \mathbb{N}$ Such that $A^m=0$
$A$ has a nonzero eigenvalue
Solution:
The matrix of above linear transformation is
$\begin{bmatrix}0&1&0&0&\cdots&0\\0&0&2&0&\cdots&0\\0&0&0&3&\cdots&0\\ \cdots&\cdots&\cdots&\cdots&\cdots\\0&0&0&0&\cdots&0\end{bmatrix}$
This is an upper triangular matrix so, It's determinant is equal to zero.
So, 2nd option is correct.
6. Let $A$ be a $n\times n$ real symmetric non-singular matrix. Suppose there exists $x\in \mathbb{R}^n$ such that
$x'Ax<0$
Then we can conclude that
Option 1:
Consider,
$A=\begin{pmatrix}-1&0\\0&-1\end{pmatrix}$ Clearly $\det(A)>0$
But $\exists x=\begin{bmatrix}1&0\end{bmatrix}$ such that $ \begin{bmatrix}1&0\end{bmatrix} \begin{bmatrix}-1&0\\0&-1\end{bmatrix} \begin{bmatrix}1\\0\end{bmatrix}<0$
So, 1st option is not correct.
Option 2:
We can not coclude that $A$ is negative definite since criteria for being negative definite is:
$\forall x\in \mathbb{R}^n$ such that
$x'Ax<0$
But here this condition is not given.
Option 3:
Take now $\;v:=Ax\;$ , then
$$v^tA^{-1}v=x^tA^tA^{-1}Ax=x^tA^tx=x^tAx<0$$
option 4:
$A:=\begin{pmatrix}-1&0\\0&1\end{pmatrix}\;\;\text{is a counterexample to 4th option since}\;\; (0\;1)A\binom01>0$
$\text{but}\;\;(1\;0)A\binom10<0\;\;\text{and}\;\;A^{-1}=A$
So, 3rd option is correct.
5.Let $V$ be the vactor space of all real polynomials of degree $\leq 10$. Let $Tp(x)=p'(x)$ for $p\in V$ be a linear transformation from $V$ to $V$. Consider the basis $\{1,x,x^2,\cdots x^{10}\}$ of $V$. Let $A$ be the matrix of $T$ with respect to this basis. Then
Trace$A$=1
Det $A$=0
There is no $m\in \mathbb{N}$ Such that $A^m=0$
$A$ has a nonzero eigenvalue
Solution:
The matrix of above linear transformation is
$\begin{bmatrix}0&1&0&0&\cdots&0\\0&0&2&0&\cdots&0\\0&0&0&3&\cdots&0\\ \cdots&\cdots&\cdots&\cdots&\cdots\\0&0&0&0&\cdots&0\end{bmatrix}$
This is an upper triangular matrix so, It's determinant is equal to zero.
So, 2nd option is correct.
6. Let $A$ be a $n\times n$ real symmetric non-singular matrix. Suppose there exists $x\in \mathbb{R}^n$ such that
$x'Ax<0$
Then we can conclude that
- $det(A)<0$
- $B=-A$ is positive definite
- $\exists y\in \mathbb{R}^n \quad y'A^{-1}y<0$
- $\forall y\in \mathbb{R}^n \quad y'A^{-1}y<0$
Option 1:
Consider,
$A=\begin{pmatrix}-1&0\\0&-1\end{pmatrix}$ Clearly $\det(A)>0$
But $\exists x=\begin{bmatrix}1&0\end{bmatrix}$ such that $ \begin{bmatrix}1&0\end{bmatrix} \begin{bmatrix}-1&0\\0&-1\end{bmatrix} \begin{bmatrix}1\\0\end{bmatrix}<0$
So, 1st option is not correct.
Option 2:
We can not coclude that $A$ is negative definite since criteria for being negative definite is:
$\forall x\in \mathbb{R}^n$ such that
$x'Ax<0$
But here this condition is not given.
Option 3:
Take now $\;v:=Ax\;$ , then
$$v^tA^{-1}v=x^tA^tA^{-1}Ax=x^tA^tx=x^tAx<0$$
option 4:
$A:=\begin{pmatrix}-1&0\\0&1\end{pmatrix}\;\;\text{is a counterexample to 4th option since}\;\; (0\;1)A\binom01>0$
$\text{but}\;\;(1\;0)A\binom10<0\;\;\text{and}\;\;A^{-1}=A$
So, 3rd option is correct.
Bahut khoob,well done man , continue it in future also
ReplyDeleteVery nice. Thank you very much
ReplyDeleteI have a question
ReplyDeleteHow can I send it
I have a question
ReplyDeleteHow can I send it
you can email me at : csirnetsolution@gmail.com
Deletethis email don't exists....please send me some notes on linear algebra at :pranjeetborah123@gmail.com ..pls mam..
Deletethis email don't exists....please send me notes on linear algebra at : pranjeetborah123@gmail.com ...pls mam
Deletethis email don't exists....please send me notes on linear algebra at : pranjeetborah123@gmail.com ...pls mam
DeleteThank you so much..continue it.
ReplyDeleteThank you so much..continue it.
ReplyDeleteNow day, absolutely everyone is searching out a new but well settled and a fulfillment flow for his or her career. after I got here to this blog, I definitely inspired through all of the facts factors noted right right here. thank you for this assist. online classes for IIT jam Physics
ReplyDeleteNice mam. Thanks you so much
ReplyDelete