1.The dimension of vector space of
all symmetric matrices of order $n \times n(n \geq 2) $ with real entries and
trace equal to zero is
Solution:
The Vector space of all \(n\times n\)
square matrix=\(n^2\). In case of symmetric matrix \(a_{ij}=a_{ji} \forall
i,j\).
So, Number of elements on the upper
part of diagonal=\(\frac{n^2-n}{2}\) Removed the \(n\) diagonal elements.
here, Trace=\(0\). So that means all
the elements of diagonal is not linearly independent, one of them can be
expressed as the linear combination of other elements of diagonal. So, we have,
the dimension of symmetric matrix with trace equal to zero equals
to \(\frac{n^2-n}{2}+(n-1)=\frac{n(n+1)}{2}-1\).
2nd option is correct.
2.The dimension of the vector space
of all symmetric matrices $A=(a_{jk}) $ of order $n\times n(n\geq 2) $ with
real entries, $a_{11}=0 $ is
- $(n^2+n-4)/2 $
- $(n^2+n+4)/2 $
- $(n^2+n-3)/2 $
- $(n^2+n+3)/2 $
Solution:
Since the elements below diagonal is
mirror image of elements above it so, number of free variable is
=\(\frac{n^2-n}{2}\)
(removed the diagonal elements and
divided by 2)
since \(a_11=0\) So, number of free
variables in diagonal=\(n-1\)
So dimension of required
matrix=\(\frac{n^2-n}{2}+(n-1)=\frac{n^2+n-2}{2}\)
Options are incorrect. Answer is
\(\frac{n^2+n-2}{2}\)
3.Consider the following row vectors:
$\alpha_1=(1,1,0,1,0,0)\quad \alpha_2=(1,1,0,0,1,0)\quad \alpha_3=(1,1,0,0,0,1)
$ $\alpha_4=(1,0,1,1,0,0)\quad \alpha_5=(1,0,1,0,1,0)\quad
\alpha_6=(1,0,1,0,0,1) $ The dimension of the vector space spanned by these row
vectors is
- $6 $
- $5 $
- $4 $
- $3 $
Solution: According to this question, we have to calculate
the row space of the given matrix:
$
C=\begin{pmatrix}1&1&0&1&0&0\\1&1&0&0&1&0\\1&1&0&0&0&1\\1&0&1&1&0&0\\1&0&1&0&1&0\\1&0&1&0&0&1\end{pmatrix}
$
Now let $
A=\begin{pmatrix}1&1&0\\1&1&0\\1&1&0\end{pmatrix} $ and
$ B=\begin{pmatrix}1&0&1\\1&0&1\\1&0&1\end{pmatrix} $
So,\(C=\begin{pmatrix}A&I\\B&I\end{pmatrix}
\rightarrow \begin{pmatrix}A&I\\B-A&0\end{pmatrix}\)
Here its clear that the rows in
\((A\quad I)\) are Linearly Independent. So the rank of \(C\) will depend on
the dimension of row space of \(B-A\) which is equal to
\(\begin{pmatrix}0&-1&1\\0&-1&1\\0&-1&1\end{pmatrix}\)
Since all rows of this matrix is exactly the same so, the dimension of its row
space=\(1\). So , Required dimension=\(3+1\).
Note: You can even calculate it
directly but that will take much more time.
4.Let $T:\mathbb{R}^n \rightarrow
\mathbb{R}^n $ be a linear transformation. Which of the following statements
implies that $T $ is bijective?
- $nullity(T)=n $
- $Rank(T)=nullity(T)=n $
- $Rank(T)+nullity(T)=n $
- $Rank(T)-nullity(T)=n $
Solution:
$T:\mathbb{R}^n \rightarrow
\mathbb{R}^n $ and If \(T\) is bijective then only \(0\) is mapped to
zero. that is, \(kernel(T)=0\) then $Rank(T)-0=n\Rightarrow
Rank(T)-nullity(T)=0$
So, fourth option is correct.
5.Let $S:\mathbb{R}^3 \rightarrow
\mathbb{R}^4 $ and $T:\mathbb{R}^4 \rightarrow \mathbb{R}^3 $ be linear
transformations such that $T \circ S $ is the identity map of $\mathbb{R}^3 $.
Then
- $T \circ S $ is the identity map of $R^4 $.
- $T \circ S $ is one-one, but not onto.
- $T \circ S $ is onto, but not one-one.
- $T \circ S $ is neither one-one nor onto.
Solution: Let $S:\mathbb{R}^3 \rightarrow \mathbb{R}^4 $ and $T:\mathbb{R}^4
\rightarrow \mathbb{R}^3$ are defined as:
\(T(a,b,c,d)=(a,b,c)\) and
\(S(a,b,c)=(b,a,0,0)\)
then \(T\circ
S(a,b,c)=T(S(a,b,c))=T(b,a,0,0)=(b,a,0)\) So, \(T\circ S\) is not an identity
map.
Next, for \((a,b,c) \neq
(a,b,c_1)\Rightarrow\) \(T\circ S((a,b,c))=(b,a,0)=T\circ S((a,b,c_1))\) So,
it's not one-one.
and there exists no pre-image
of $(b,a,2)$. So, it's not onto. So, fourth option is correct.
6.Let $W$ be the vector space of all real
polynomials of degree at most \(3\). Define $T:W \rightarrow W $ by $T(p(x))=p'(x)
$ where $p' $ is the derivative of $P $. The matrix of $T $ in the
basis $\{1,x,x^2,x^3\} $, considered as column vectors, is given by
- $
\begin{pmatrix}0&0&0&0\\0&1&0&0\\0&0&2&0\\0&0&0&3\end{pmatrix}
$
- $
\begin{pmatrix}0&0&0&0\\1&0&0&0\\0&2&0&0\\0&0&3&0\end{pmatrix}
$
- $ \begin{pmatrix}0&1&
0&0\\0&0&2&0\\0&0&0&3\\0&0&0&0\end{pmatrix}
$
- $ \begin{pmatrix}0&1&2&3\\
0&0&0&0\\0&0&0&0\\0&0&0&0\end{pmatrix}
$
Solution:
\(T(1)=0\times 1+0\times x+0\times
x^2+0\times x^3\)
\(T(x)=1\times 1+0\times x+0\times
x^2+0\times x^3\)
\(T(x^2)=0\times 1+2\times x+0\times
x^2+0\times x^3\)
\(T(x^3)=0\times 1+0\times x+3\times
x^2+0\times x^3\)
So matrix of linear transformation
is:
$
{\begin{pmatrix}0&0&0&0\\1&0&0&0\\0&2&0&0\\0&0&3&0\end{pmatrix}}^T=\begin{pmatrix}0&1&2&3\\
0&0&0&0\\0&0&0&0\\0&0&0&0\end{pmatrix} $
Third option is correct.
7.Let $N $ be the vector space of all
polynomials of degree at most 3. Define $S:N \rightarrow N \text{ by }
S(p(x))=p(x+1), p\in N $ Then the matrix of $S $ in the basis $\{1,x,x^2,x^3\} $,
connsidered as column vectors, is given by
- $
\begin{pmatrix}1&0&0&0\\0&2&0&0\\0&0&3&0\\0&0&0&4\end{pmatrix}
$
- $
\begin{pmatrix}1&1&1&1\\0&1&2&3\\0&0&1&3\\0&0&0&1\end{pmatrix}
$
- $
\begin{pmatrix}0&2&0&0\\0&0&2&0\\0&0&0&3\\0&0&0&0\end{pmatrix}
$
- $
\begin{pmatrix}0&1&2&3\\0&0&0&0\\0&0&0&0\\
0&0&0&0\end{pmatrix} $
Solution:
\(S(1)=1\)
\(S(x)=(x+1)=1.1+1.x\)
\(S(x^2)={(x+1)}^2=1.1+2.x+1.x^2\)
\(S(x^3)=(x+1)^3=1.1+3.x+3.x^2+x^3\)
So $
\begin{pmatrix}1&1&1&1\\0&1&2&3\\0&0&1&3\\0&0&0&1\end{pmatrix}
$ option is correct.
8.A linear transformation $T $
rotates each vector in $\mathbb{R}^2 $ clockwise through $90^{\circ} $. The
matrix $T $ ralative to the standard ordered basis $\left(\begin{bmatrix}1\\ 0
\end{bmatrix} ,\begin{bmatrix} 0\\ 1 \end{bmatrix} \right) $ is
- $\begin{bmatrix}0&-1\\ -1&0\end{bmatrix} $
- $\begin{bmatrix}0&1\\ -1&0\end{bmatrix} $
- $\begin{bmatrix}0&1\\ 1&0\end{bmatrix} $
- $\begin{bmatrix}0&-1\\ 1&0\end{bmatrix} $
Solution: the rotation
matrix is given by $\begin{bmatrix}\cos
(\theta)&-\sin(\theta)\\ \sin(\theta)&\cos(\theta)\end{bmatrix} $ (In
counterclock wise direction.)
So, the required matrix is :$\begin{bmatrix}\cos
(-90^o)&-\sin(-90^o)\\ \sin(-90^o)&\cos(-90^o)\end{bmatrix}=\begin{bmatrix}0&-1\\
1&0\end{bmatrix} $ So, fourth option is correct.
9..Let $n $ be a positive integer and
let $M_n(\mathbb{R}) $ denote the space of all $n\times n $ real matrices. If $T:M_n(\mathbb{R})\rightarrow
M_n(\mathbb{R}) $ is a linear transformation such that $T(A)=0 $ whenever $A
\in M_n(\mathbb{R}) $ is symmetric or skew-symmetric, then the rank of $T $ is
- $n(n+1)/2 $
- $n(n-1)/2 $
- $n $
- $0 $
Solution: Since it given that \(T(A)=0\) for all symmetric
and skew symmetric matrices.
And we know that, every matrix can be
expressed as the sum of symmetric and skew symmetric matrix.
So let $M\in M_n(\mathbb{R})$
then
\(M=\frac{1}{2}\times
(M+M^T)+\frac{1}{2}\times (M+M^T)\)
\(\Rightarrow T(M)=\frac{1}{2}\times
T(M+M^T)+\frac{1}{2}\times T(M+M^T)=0+0\)
So. 4th option is
correct.
10.Consider $\mathbb{R}^3 $ with the
standard inner product. Let $W $ be the subspace of $\mathbb{R}^3 $ spanned by $(1,0,-1)
$. Which of the following is a basis for the orthogonal complement of $W $?
- $\{(1,0,1),(0,1,0)\} $
- $\{(1,2,1),(0,1,1)\} $
- $\{(2,1,2),(4,2,4)\} $
- $\{(2,-1,2),(1,3,1),(-1,-1,-1)\} $
Solution:
Since inner product of $\{(1,0,-1)\}$
with $\{(1,0,1),(0,1,0)\}$ is zero.
So, 1st option is
correct.
11.Let $A=\begin{bmatrix}
1&3&5&a&13\\0&1&7&9&b\\0&0&1&11&15\end{bmatrix}
$ where $a,b \in \mathbb{R} $. Choose the correct statement.
- There exist values of $a $ and $b $ for which the columns of $A $
are linearly independent.
- There exist values of $a $ and $b $ for which $Ax=0 $ has $0 $ as
only solution.
- For all values of $a $ and $b $ the rows of $A $ span a $3- $dimensional
subspace of $\mathbb{R}^5 $.
- There exist values of $a $ and $b $ for which $Rank(A)=2 $.
Solution: This matrix is in standard Echelon Form.
There are 3 pivots.
so, dimension of Row space= Dimension
of column space\(=3\).
No, matter what is the value of
\(a,b\) the rows of \(A\) Spans a 3-dimesnsional subspace of \(\mathbb{R}^3\).
So, third option is correct.
12.Let $A $ be a $4\times 4 $
invertible real matrix. Which of the following is NOT necessarily true?
- The rows of $A $ form a basis of $\mathbb{R}^4 $.
- Null space of $A $ contains only the $0 $ vector.
- $A $ has 4 distinct eigenvalues.
- Image of the transformation $x \mapsto Ax $ on $\mathbb{R}^4 $ is $\mathbb{R}^4
$.
Solution: 3rd option is correct.
For example: \(\begin{bmatrix}
1&1&0&0\\
0&1&0&0\\0&0&2&1\\0&0&0&2 \end{bmatrix}\)
Eigenvalues are:\(1,1,2,2\)
13.Let $n $ be an integer, $n\geq 3 $,
and let $u_1,u_2,\cdots,u_n $ be $n $ linearly independent elements in a vector
space over $\mathbb{R} $. Set $u_0=0 $ and $u_{n+1}=u_1 $. Define $v_i=u_i+u_{i+1}
$ and $w_i=u_{i-1}+u_{i} $ FOR $i=1,2,\cdots, n $. Then
- $v_1,v_2,\cdots,v_n $ are linearly independent if $n=2010 $.
- $v_1,v_2,\cdots,v_n $ are linearly independent if $n=2011 $.
- $w_1,w_2,\cdots,w_n $ are linearly independent if $n=2010 $.
- $w_1,w_2,\cdots,w_n $ are linearly independent if $n=2011 $.
Solution:
Given,
\(v_1=u_1+u_2\)
\(v_2=u_2+u_3\)
\(\cdots\)
\(v_n=u_n+u_n+1=y_n+u_1\)(given
\(u_n=u_1\))
now consider,
\(a_1v_1+a_2v_2+\cdots +a_nv_n=0\)
=\((a_1+a_2)u_1+(a_2+a_3)u_2+\cdots
+(a_{n-1}+a_n)=0\) Substituting values and taking common
\(\Rightarrow (a_1+a_2=0)\quad
(a_2+a_3=0)\cdots (a_{n-1}+a_n=0\))
Let \(a_1=\alpha\)
then we have
\(a_1=\alpha\quad a_2=-\alpha \cdots
a_{n-1}=(-1)^n\alpha ,\quad a_n=(-1)^{n+1}\alpha\)
but since \(a_1=-a_n\) Therefore
\((-1)^{n+1}\alpha=-\alpha\)
Therefore, \(n+1\) must be odd.
So, 3rd option is correct
\(a_1w_1+a_2w_2+\cdots +a_nw_n=0\)
\(\Rightarrow
a_1(0+u_1)+a_2(u_1+u_2)+\cdots +a_n(u_{n-1}-u_n)=0\)
\(\Rightarrow
(a_1+a_2)u_1+(a_2+a_3)u_2+\cdots +(a_{n-1}+a_n)u_{n-1}+a_n(u_n)=0\)
Since $u_1,u_2,\cdots,u_n $ be $n $
linearly independent elements in a vector space over $\mathbb{R} $
Therefore we get:
\((a_1+a_2)=(a_2+a_3)=\cdots
+(a_{n-1}+a_n)=a_n(u_n)=0\)
\(\Rightarrow a_1=a_2=\cdots a_n=0\)
for all \(n\).
Therefore, 3rd and 4th options are
correct
Hence, \(2,3,4\) options are correct.
14..Let $n $ be a positive integer
and $V $ be an $(n+1)- $dimensional vector space over $\mathbb{R} $. If $\{e_1,e_2,\cdots,e_{n+1}\}
$ is a basis of $V $ and $T:V\rightarrow V $ is the linear transformation
satisfying $T(e_i)=e_{i+1} \text{ for } i=1,2,\cdots, n \text{ and }
T(e_{n+1})=0. $ Then
- trace of $T $ is nonzero.
- rank of $T $ is $n $.
- nullity of $T $ is $1$.
- $T^n=T\circ T \circ \cdots \circ T $(n times) is the zero map.
Solution:
\(T(e_1)=0\times e_1+1\times
e_2+\cdots+0\times e_n\)
\(T(e_2)=0\times e_1+0\times
e_2+1\times e_3\cdots+0\times e_n\)
\(\cdots\)
\(T(e_n)=o\times e_1+0\times
e_2+\cdots+0\times e_n\)
So matrix of linear transformation
Is:
\(\begin{pmatrix}0&0&0&\cdots&0&0&0\\1&0&0&\cdots&0&0&0\\0&1&0&\cdots&0&0&0\\0&0&0&\cdots&0&1&0\end{pmatrix}\)
From this matrix, It is clear that,
rank of $T $ is $n $ and nullity of $T
$ is $1$.
now let \(e_m\in \{e_1,e_2\cdots
e_n\}\).
then $T^n(e_m)=T\circ T \circ \cdots
\circ T(e_m) $
after operating \(T\) ,
\(n-m\) times,
we get
$\underbrace{T\circ T \circ \cdots
\circ T(0)}_{m\quad times}$=$0$
So,\(2,3,4\) are correct options.
15.Let $a,b,c,d \in \mathbb{R}$ and
let $T:\mathbb{R}^2 \rightarrow \mathbb{R}^2 $ be the linear transformation
defined by $T\left (\begin{bmatrix} x\\ y \end{bmatrix}\right) =\begin{bmatrix}
ax+by\\ cx+dy \end{bmatrix} \text{ for } \begin{bmatrix} x\\ y \end{bmatrix}\in
\mathbb{R}^2, $ Let $S:\mathbb{C} \rightarrow \mathbb{C}$ be the corresponding
map defined by $S(x+iy)=(ax+by)+i(cx+dy) \text{ for } x,y\in \mathbb{R}. $ Then
- $S $ is always $\mathbb{C} $linear, that is $S(z_1+z_2)=S(z_1)+S(z_2)
$ for all $z_1,z_2 \in \mathbb{C} $ and $S(\alpha z)=\alpha S( z) $ for
all $\alpha \in \mathbb{C}$ and $z \in \mathbb{C} $
- $S$ is always $\mathbb{C}- $linear if $b=-c $ and $d=a $.
- $S$ is always $\mathbb{C}- $linear only if $b=-c $ and $d=a $.
- $S$ is always $\mathbb{C}- $linear if and only if $T $ is identity
transformation.
solution:
option 1 is correct.
\(S(x_1+iy_1+x_2+iy_2)\)
\(=a(x_1+x_2)+b(y_1+y_2)+i(c(x_1+x_2)+d(y_1+y_2)\)
=\(S(x_1+x_2)\)
\(S(\alpha(x+iy))=(\alpha(ax+by)+i\times
\alpha (cx+dy)\)
So, \(S\) is \(\mathbb{C}\)-Linear
for all \(a,b,c,d\)
Therefore, 1,2,3 are correct.
Remark:
If you look closely there is a
similarity between \(T\) and \(S\) both are same kind of Linear Transformation
with respect to different basis.
16.For a positive integer $n $, let $P_n
$ denote the space of all polynimials $p(x) $ with coefficients in $\mathbb{R} $
such that $\deg p(x) \leq n $, and let $B_n $ denote the standard basis of $P_n
$ given by $B_n=\{1,x,x^2,\cdots , x^n\} $. If $T:P_3 \rightarrow P_4 $ is the
linear transformation defined by $T(p(x))=x^2p'(x)+\int_0^x p(t)dt $ and $A=(a_{ij})
$ is the $5\times 4 $ matrix of $T $ with respect of standard bases $B_3 $ and $B_4
$, then
- $a_{32}=\frac{3}{2},a_{33}=\frac{7}{3} $
- $a_{32}=\frac{3}{2},a_{33}=0 $
- $a_{32}=0,a_{33}=\frac{7}{3} $
- $a_{32}=0,a_{33}=0 $
Solution: \(T(1)=x^2p'(1)+\int_0^x p(1)dt=x=1\times 0+1\times
x\cdots x^n\times 0\)
\(T(x)=x^2p'(x)+\int_0^x p(x)dt=x=1\times
0+0\times x+\frac{3}{2} x^2\cdots x^n\times 0\)
\(T(x^2)=x^2p'(x^2)+\int_0^x
p(x^2)dt=x=1\times 0+0\times x+0\times x^2+\frac{7}{3}x^3\cdots x^n\times 0\)
So first three column of the matrix
of transformation is:
\(\begin{pmatrix}0&0&0&\cdots\\1&0&0&\cdots\\0&\frac{3}{2}&0&\cdots\\0&0&\frac{7}{3}&\cdots\\\cdots&\cdots&\cdots\\\cdots&\cdots&\cdots\end{pmatrix}\)
clearly,
\(a_{32}=\frac{3}{2},a_{33}=0\).
2nd option is correct.
17. A linear operator $T $ on
complex vector space $V $ has characteristic polynomial $x^3(x-5)^2
$ and minimal polynomials $x^2(x-5) $.
Choose all correct options.
- The Jordan form of $T $ is uniquely determined by the given
information.
- There are exactly $2 $ Jordan blocks in the Jordan
decomposition of $T $.
- The operator induced by $T $ on the quotient space $V/\ker
(T-5I) $ is nilpotent, where $I $ is the identity operator.
- The operator induced by $T $ on the quotient space $V/\ker
(T-5I) $ is scaler multiple of the identity operator.
Solution:
Minimal Polynomial is =$x^2(x-5) $.
SO, Jordan canonical form is:
\(\begin{pmatrix}
0&1&0&0&0\\0&0&0&0&0\\0&0&0&0&0\\0&0&0&5&0\\0&0&0&0&5\end{pmatrix}\)
It's unique upto order of Jordan
blocks.
Since, From minimal polynomial It is
clear that there exists a Jordan block of order \(2\times 2\) corresponding to
\(0\). So, \(1\) zero which is remaining can occur in only 1 way. Similar
argument for \(5\).
Now, since all eigenvalues of the
operator induced by $T $ on the quotient space $V/\ker (T-5I) $ is
\(0\)
So, It is Nilpotent.
So, \(1\) and \(3\) options are
correct.
nice work mam
ReplyDeletevery helpful
ReplyDeleteI am happy to find your distinguished way of writing the post. Now you make it easy for me to understand and implement the concept. Thank you for the post. vector art
ReplyDeleteThis is such a great resource that you are providing and you give it away for free. I love seeing blog that understand the value. Im glad to have found this post as its such an interesting one! I am always on the lookout for quality posts and articles so i suppose im lucky to have found this! I hope you will be adding more in the future... vector
ReplyDeleteBrilliant work mam
ReplyDeleteThis blog is really helpful to pass on redesignd enlightening endeavors over web which is genuinely examination. I found one productive instance of this truth through this blog. Image Vectorizer Mac
ReplyDelete
ReplyDeleteThanks for your post. Keep blogging.
Ramanasri IAS MATHS