1. Let $a_n=\sin(\pi/n)$. For the
sequence $a_1, a_2, \cdots$ the supremum is
- $0$ and it is attained
- $0$ and it is not attained
- $1$ and it is attained
- $1$ and it is not attained
Solution: This is sequence is {sin$\pi$, sin$\pi/2$,
sin$\pi/3$$\dots$}
Clearly, Supremum is 1. So, 3rd option is correct.
2.Which of the following is/are
correct?
- $n \log(1+ \frac{1}{n+1}) \rightarrow 1$ as $n \rightarrow \infty$
- $(n+1) \log(1+ \frac{1}{n+1}) \rightarrow 1$ as $n \rightarrow
\infty$
- $n^2 \log(1+ \frac{1}{n}) \rightarrow 1$ as $n \rightarrow \infty$
- $n \log(1+ \frac{1}{n^2}) \rightarrow 1$ as $n \rightarrow \infty$
Solution:
\(\lim_{n\to
\infty}\frac{1+\log n}{n}=1\)
Option \(1\) is correct:
$n \log(1+ \frac{1}{n+1})$ =\(n \log(1+\frac{1}{n+1})=(n+1)\log(1+
\frac{1}{n+1})-\log(1+\frac{1}{n+1})$ So $\lim_{n\to
\infty}\frac{\log(1+\frac{1}{n+1})}{n+1}-\lim_{n\to
\infty}\log(1+\frac{1}{n+1})\)=\(\lim_{\frac{1}{n+1}\to
0}\frac{\log(1+\frac{1}{n+1})}{n+1}-\lim_{\frac{1}{n+1}\to 0}\log(1+\frac{1}{n+1})=1+0=1\)
Option \(2\) is correct:
\((n+1) \log(1+
\frac{1}{n+1})=\frac{\log(1+ \frac{1}{n+1})}{\frac{1}{n+1}}\) taking limit :
\(\lim_{\frac{1}{n+1} \to
0}\frac{\log(1+ \frac{1}{n+1})}{\frac{1}{n+1}}=1\)
Option \(3\):
\(n^2 \log(1+ \frac{1}{n})=n\times
\frac{\log(1+ \frac{1}{n})}{1/n}\) taking limit:
we get: \(\lim_{n\to \infty} n \times
\lim_{\frac{1}{n}\to 0}n^2 \log(1+ \frac{1}{n})\)=\(\infty \times 1=\infty\)
Option \(4\):
\(\lim_{n\to \infty} n \log(1+
\frac{1}{n^2})=\lim_{n\to \infty} \frac{n^2}{n} \log(1+
\frac{1}{n^2})=\lim_{n\to
\infty}\frac{1}{n}\times\frac{\log(1+\frac{1}{n^2})}{\frac{1}{n^2}}=0\).
So, \(1\) and \(4\) are correct
options.
3.If $\{x_n \}$ and $\{y_n \}$ are
sequence of real numbers, which of the following is/are true?
- $\limsup (x_n+y_n) \leq \limsup x_n + \limsup y_n$
- $\limsup (x_n+y_n) \geq \limsup x_n + \limsup y_n$
- $\liminf (x_n+y_n) \leq \liminf x_n + \liminf y_n$
- $\liminf (x_n+y_n) \geq \liminf x_n + \liminf y_n$
Solution:
Given two sequences, $\;\displaystyle \{a_n\}_{n
\in \Bbb N},\;\,\{b_n\}_{n \in \Bbb N},\;$
and given the definition of the supremum of a
sequence, we can see that for every $k\geq n$, $(a_k + b_k) \;\; \leq
\;\;\sup_{k\geq n} a_k + \sup_{k\geq n} b_k\,.$
So , $Sup_{k\geq n}(a_k + b_k) \;\; \leq
\;\;\sup_{k\geq n} a_k + \sup_{k\geq n} b_k\,.$
Taking limit both sides we get $\limsup
(x_n+y_n) \leq \limsup x_n + \limsup y_n$
Similarly, we can prove that,
$\liminf (x_n+y_n) \geq \liminf x_n + \liminf
y_n$
7.$\lim_{n \rightarrow \infty}
\frac{1}{\sqrt{n}}(\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} +
\sqrt{5}} + \cdots + \frac{1}{\sqrt{2n - 1} + \sqrt{2n + 1}})$ equals
- $\sqrt{2}$
- $\frac{1}{\sqrt{2}}$
- $\sqrt{2} + 1$
- $\frac{1}{\sqrt{2} + 1 }$
Solution: $\lim_{n \rightarrow \infty}
\frac{1}{\sqrt{n}}(\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} +
\sqrt{5}} + \cdots + \frac{1}{\sqrt{2n - 1} + \sqrt{2n + 1}})$
=$\lim_{n \rightarrow \infty}
\frac{1}{\sqrt{n}}(\frac{\sqrt{1}-{\sqrt{3}}}{-2} +
\frac{\sqrt{3}-\sqrt{5}}{-2} + \cdots + \frac{\sqrt{2n - 1}-\sqrt{2n + 1}}{-2})$
=$lim_{n\to \infty}$ $\frac{1}{\sqrt{n}}$
$(\sqrt{1}-\sqrt{2n+1})$
=$\frac{\sqrt{2}}{2}$=$\frac{1}{\sqrt{2}}$.
8.Let $p(x)$ be a polynomial in the
real variable $x$ of degree $5$. Then $\lim_{n\rightarrow \infty}
\frac{p(n)}{2^n}$ is
- $5$
- $1$
- $0$
- $\infty$
Solution: Let $P(x)=a_5 x^5+a_4 x^4+\dot a_0$ and using
binomial expansion , $2^x=(1+1)^x=1+x+\frac{x(x-1)}{2!}+...$, Dividing numerator
and denominator by $x^5$, and taking limit $x\to \infty$ we get $lim_{x\to
\infty} \frac{a_5+a_4/x+...+a_0/x^5}{1+1/x^4+x(x+1)/(2\times
x^5)+...+(x(x-1)(x-2)(x-3)(x-4))/5!x^5+x(x-1)(x-2)(x-3)(x-4)(x-5))/6!x^5+....)}$
So as denominator tends to $\infty $
and numerator tends to $a_5$ (A constant value) So limit tends to zero.
9..The limit
\(\lim_{x \rightarrow 0} \frac{1}{x}
\int_x^{2x}e^{-t^2}~dt\)
- does not exist.
- is inifinite
- exists and equals 1 .
- exists and equals 0 .
Solution:
\(\lim_{x\rightarrow
0}\frac{1}{x}\int_x^{2x}e^{-t^2}~dt\)=\(\lim_{x\rightarrow
0}\frac{1}{x}\int_x^{2x}\left[ 1-\frac{t^2}{1!}+\frac{t^4}{2!}-\cdots
\right]~dt \)
=\(\lim_{x\rightarrow 0} \frac{1}{x}\left[ t-\frac{t^3}{3\cdot
1!}+\frac{t^4}{4\cdot 2!}-\cdots \right]_x^{2x}\)
=\(\lim_{x \rightarrow 0} \frac{1}{x} \left[ x-\frac{(2x)^3-x^3}{3\cdot
1!}+\frac{(2x)^4-x^4}{4\cdot 2!} - \cdots \right]\)
= \(\lim_{x \rightarrow 0} \frac{1}{x} \left[x-\frac{7x^3}{3\cdot
1!}+\frac{15x^4}{4\cdot 2!} - \cdots \right]\)
=\(\lim_{x \rightarrow 0}\left[1-\frac{7x^2}{3\cdot 1!}+\frac{15x^3}{4\cdot
2!}-\cdots \right]=1\)
in first question an = sin(pi/n) , why supremum 1 is not attained?
ReplyDeleteit is attained,so answer must be option 3 not 4
Yes you are right
DeleteOption 3 is correct in 1 question.
DeleteYes you are right ...it is attained and a2 is supremum
DeleteYes that's right ✔
DeleteWhat is the region I don't understand can you explain
DeleteExplain it
Deletein first question an = sin(pi/n) , why supremum 1 is not attained?
ReplyDeleteit is attained,so answer must be option 3 not 4
in question 1, why option 4 is correct?
ReplyDeletesup 1 is attained there ( sin(pi/2)=1) so it should be option 3
thanks Madam/sir
ReplyDeletein question 1 answer should be 3rd option
ReplyDeleteThis blog is honestly beneficial concerning all educational understanding I earned. It covered a wonderful region of issue that may help some of needy humans. everything cited here is obvious and without a doubt beneficial. online video classes for IIT JAM
ReplyDeleteAmazing and effective proposal by the creator of this blog are truly useful to decrease our hack-tic life. My own particular perspectives are coordinating with creator and I have encountered such. Online Classes for CSIR Net Physical science
ReplyDeleteQ.no 2 give some explanation
ReplyDelete