Saturday, April 16, 2016

Mathematics: CSIR-NET Previous year Solved questions on Sequence.

1. Let $a_n=\sin(\pi/n)$. For the sequence $a_1, a_2, \cdots$ the supremum is
  • $0$ and it is attained
  • $0$ and it is not attained
  • $1$ and it is attained
  • $1$ and it is not attained
 Solution: This is sequence is {sin$\pi$, sin$\pi/2$, sin$\pi/3$$\dots$}
Clearly, Supremum is 1. So, 3rd option is correct.
2.Which of the following is/are correct?
  • $n \log(1+ \frac{1}{n+1}) \rightarrow 1$ as $n \rightarrow \infty$
  • $(n+1) \log(1+ \frac{1}{n+1}) \rightarrow 1$ as $n \rightarrow \infty$
  • $n^2 \log(1+ \frac{1}{n}) \rightarrow 1$ as $n \rightarrow \infty$
  • $n \log(1+ \frac{1}{n^2}) \rightarrow 1$ as $n \rightarrow \infty$
Solution:
\(\lim_{n\to \infty}\frac{1+\log n}{n}=1\)
Option \(1\) is correct:
$n \log(1+ \frac{1}{n+1})$ =\(n \log(1+\frac{1}{n+1})=(n+1)\log(1+ \frac{1}{n+1})-\log(1+\frac{1}{n+1})$ So $\lim_{n\to \infty}\frac{\log(1+\frac{1}{n+1})}{n+1}-\lim_{n\to \infty}\log(1+\frac{1}{n+1})\)=\(\lim_{\frac{1}{n+1}\to 0}\frac{\log(1+\frac{1}{n+1})}{n+1}-\lim_{\frac{1}{n+1}\to 0}\log(1+\frac{1}{n+1})=1+0=1\)
Option \(2\) is correct:
\((n+1) \log(1+ \frac{1}{n+1})=\frac{\log(1+ \frac{1}{n+1})}{\frac{1}{n+1}}\) taking limit :
\(\lim_{\frac{1}{n+1} \to 0}\frac{\log(1+ \frac{1}{n+1})}{\frac{1}{n+1}}=1\)
Option \(3\):
\(n^2 \log(1+ \frac{1}{n})=n\times \frac{\log(1+ \frac{1}{n})}{1/n}\) taking limit:
we get: \(\lim_{n\to \infty} n \times \lim_{\frac{1}{n}\to 0}n^2 \log(1+ \frac{1}{n})\)=\(\infty \times 1=\infty\)
Option \(4\):
\(\lim_{n\to \infty} n \log(1+ \frac{1}{n^2})=\lim_{n\to \infty} \frac{n^2}{n} \log(1+ \frac{1}{n^2})=\lim_{n\to \infty}\frac{1}{n}\times\frac{\log(1+\frac{1}{n^2})}{\frac{1}{n^2}}=0\).
So, \(1\) and \(4\) are correct options.
3.If $\{x_n \}$ and $\{y_n \}$ are sequence of real numbers, which of the following is/are true?

  • $\limsup (x_n+y_n) \leq \limsup x_n + \limsup y_n$
  • $\limsup (x_n+y_n) \geq \limsup x_n + \limsup y_n$
  • $\liminf (x_n+y_n) \leq \liminf x_n + \liminf y_n$
  • $\liminf (x_n+y_n) \geq \liminf x_n + \liminf y_n$
Solution:
Given two sequences, $\;\displaystyle \{a_n\}_{n \in \Bbb N},\;\,\{b_n\}_{n \in \Bbb N},\;$

and given the definition of the supremum of a sequence, we can see that for every $k\geq n$, $(a_k + b_k) \;\; \leq \;\;\sup_{k\geq n} a_k + \sup_{k\geq n} b_k\,.$
So , $Sup_{k\geq n}(a_k + b_k) \;\; \leq \;\;\sup_{k\geq n} a_k + \sup_{k\geq n} b_k\,.$
 Taking limit both sides we get $\limsup (x_n+y_n) \leq \limsup x_n + \limsup y_n$
Similarly, we can prove that,
 $\liminf (x_n+y_n) \geq \liminf x_n + \liminf y_n$
7.$\lim_{n \rightarrow \infty} \frac{1}{\sqrt{n}}(\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \cdots + \frac{1}{\sqrt{2n - 1} + \sqrt{2n + 1}})$ equals

  • $\sqrt{2}$
  • $\frac{1}{\sqrt{2}}$
  • $\sqrt{2} + 1$
  • $\frac{1}{\sqrt{2} + 1 }$
Solution: $\lim_{n \rightarrow \infty} \frac{1}{\sqrt{n}}(\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \cdots + \frac{1}{\sqrt{2n - 1} + \sqrt{2n + 1}})$
=$\lim_{n \rightarrow \infty} \frac{1}{\sqrt{n}}(\frac{\sqrt{1}-{\sqrt{3}}}{-2} + \frac{\sqrt{3}-\sqrt{5}}{-2} + \cdots + \frac{\sqrt{2n - 1}-\sqrt{2n + 1}}{-2})$
=$lim_{n\to \infty}$ $\frac{1}{\sqrt{n}}$ $(\sqrt{1}-\sqrt{2n+1})$
=$\frac{\sqrt{2}}{2}$=$\frac{1}{\sqrt{2}}$.
8.Let $p(x)$ be a polynomial in the real variable $x$ of degree $5$. Then $\lim_{n\rightarrow \infty} \frac{p(n)}{2^n}$ is
  •  $5$
  • $1$
  • $0$
  • $\infty$
Solution: Let $P(x)=a_5 x^5+a_4 x^4+\dot a_0$ and using binomial expansion , $2^x=(1+1)^x=1+x+\frac{x(x-1)}{2!}+...$, Dividing numerator and denominator by $x^5$, and taking limit $x\to \infty$ we get $lim_{x\to \infty} \frac{a_5+a_4/x+...+a_0/x^5}{1+1/x^4+x(x+1)/(2\times x^5)+...+(x(x-1)(x-2)(x-3)(x-4))/5!x^5+x(x-1)(x-2)(x-3)(x-4)(x-5))/6!x^5+....)}$
So as denominator tends to $\infty $ and numerator tends to $a_5$ (A constant value) So limit tends to zero.
9..The limit
\(\lim_{x \rightarrow 0} \frac{1}{x} \int_x^{2x}e^{-t^2}~dt\)
  1. does not exist.
  2. is inifinite
  3. exists and equals 1 .
  4. exists and equals 0 .
Solution: 

\(\lim_{x\rightarrow 0}\frac{1}{x}\int_x^{2x}e^{-t^2}~dt\)=\(\lim_{x\rightarrow 0}\frac{1}{x}\int_x^{2x}\left[ 1-\frac{t^2}{1!}+\frac{t^4}{2!}-\cdots \right]~dt \)


=\(\lim_{x\rightarrow 0} \frac{1}{x}\left[ t-\frac{t^3}{3\cdot 1!}+\frac{t^4}{4\cdot 2!}-\cdots \right]_x^{2x}\)


=\(\lim_{x \rightarrow 0} \frac{1}{x} \left[ x-\frac{(2x)^3-x^3}{3\cdot 1!}+\frac{(2x)^4-x^4}{4\cdot 2!} - \cdots \right]\)


= \(\lim_{x \rightarrow 0} \frac{1}{x} \left[x-\frac{7x^3}{3\cdot 1!}+\frac{15x^4}{4\cdot 2!} - \cdots \right]\)


=\(\lim_{x \rightarrow 0}\left[1-\frac{7x^2}{3\cdot 1!}+\frac{15x^3}{4\cdot 2!}-\cdots \right]=1\)


14 comments :

  1. in first question an = sin(pi/n) , why supremum 1 is not attained?
    it is attained,so answer must be option 3 not 4

    ReplyDelete
  2. in first question an = sin(pi/n) , why supremum 1 is not attained?
    it is attained,so answer must be option 3 not 4

    ReplyDelete
  3. in question 1, why option 4 is correct?
    sup 1 is attained there ( sin(pi/2)=1) so it should be option 3

    ReplyDelete
  4. in question 1 answer should be 3rd option

    ReplyDelete
  5. This blog is honestly beneficial concerning all educational understanding I earned. It covered a wonderful region of issue that may help some of needy humans. everything cited here is obvious and without a doubt beneficial. online video classes for IIT JAM

    ReplyDelete
  6. Amazing and effective proposal by the creator of this blog are truly useful to decrease our hack-tic life. My own particular perspectives are coordinating with creator and I have encountered such. Online Classes for CSIR Net Physical science

    ReplyDelete
  7. Q.no 2 give some explanation

    ReplyDelete